Welcome,

Spring appears to be much sooner than last year. With drier conditions, many of you will be able to be in the field much earlier than prior years, which will be a positive. As the new growing season begins, I have fielded calls and had office visits regarding the FSA farm program sign up, land rent negotiations, and frost seeding. Each of these topics are related to commodity prices and reevaluating many of the possible outcomes and costs associated with growing the crop.

I did want to provide an update regarding the needs assessment survey that I sent to the newsletter list. With over a 27% return rate, I was able to gather a good cross section of input. Thank you for providing me with your thoughts and priorities. The survey showed that nutrient management, marketing, and crop production are areas that need attention. Within nutrient management, soil health and nutrient management plans are topics which that a majority of respondents indicated are areas that more awareness and knowledge could improve productivity and reduce costs.

This coming growing season may present new challenges with commodity prices and production costs, but I know that everyone looking forward to meeting that challenge. Farmers are a resilient bunch, and that is why I look forward to providing research based practices and information in the growing season ahead.

Have a safe spring,

Darrell
CALENDAR OF EVENTS

April
30 9:00 am to 2:00 pm Wisconsin Dairy and Beef Well-Being Conference, Kimberly

May
21 7:00 pm to 9:00 pm MAQA Animal Health Products meeting, J. P. Coughlin Center
26 7:00 pm to 9:00 pm MAQA Animal Health Products meeting, J. P. Coughlin Center

June
13 8:00 am to 12:00 pm June Dairy Breakfast, Mike and Jane Pamer's Dairy Farm

Do you want to receive the most current University of Wisconsin research information by e-mail? The Winnebago County agriculture list receives a weekly update during summer on crop conditions, pests to watch out for, and events. If you would like to be included on this list, please send an e-mail to arolph@co.winnebago.wi.us.
SAVE THE DATE!

Winnebago County Dairy Breakfast on the Farm

Saturday, June 13, 2015
8 am to 12 pm

Hosted by Mike and Jane Pamer's Dairy Farm
Neighbors Feeding Neighbors

6619 County Rd M, Winneconne WI
Wisconsin Dairy and Beef Well-Being Conference
April 30, 2015

Liberty Hall
800 Eisenhower Dr, Kimberly, WI 54136

Agenda

9:00 AM Registration
9:30 AM We’re Only as Good as Our Customers Think We Are
 Bruce Feinberg, McDonald’s Global Health and Welfare Officer
10:20 AM Proper Animal Care is Not Just Good for Cattle, It’s Good for All of Us
 Dr. Dee Griffin, Feedlot Production Management Veterinarian and Professor, University of Nebraska
11:20 AM The Value of a Cull Cow—The Packer Perspective
 Dr. Lily Edwards-Callaway, Animal Welfare Programs, JBS
12:10 PM LUNCH
1:00 PM Breakout Sessions
 Dr. Amy Stanton Dr. Kurt Vogel Dr. Jan Shearer
 Dairy Cattle Well Being Specialist Assistant Professor Professor
 UW-Madison/UW-Extension UW-River Falls Iowa State University Veterinary School
 Topic: Dairy Calf Care and Management Topic: Humane Euthanasia Topic: Lameness in Cow/Calf and Feedyard Cattle
2:00 PM Biological Systems Overload—Looking at Optimal Production, Not Maximum Production
 Dr. Temple Grandin, Professor, Colorado State University

Registration Form
Wisconsin Dairy and Beef Well-Being Conference

Name(s)
Address City/State/Zip
Email address
Phone # attending

One-hundred spaces for the conference will be reserved for students. The first 100 students with PAID registration will be

guaranteed a space at the conference. Registration $45

Registration Deadline April 9. Payment MUST accompany registration, or your registration will not be considered complete.

Make check payable to: UW-Extension
Registration deadline: April 9, 2015
Mail to: UW-Extension
3365 W. Brewster Street
Appleton WI 54914
WHEAT STAND ASSESSMENT

As the weather improves and soils begin to warm, the winter wheat that looked so green and lush is now brown and dead looking. How do you assess whether a majority of the crop has made it through the cold days of winter? What does a stand need to reach the best yield? Have researchers found the best way to apply nitrogen for the best return for your fertilizer dollar?

If a stand looks brown and dead, dried dead leaves are not a good indicator of a significant winter injury or a lost crop. The best way to assess the condition of the crop is to look at the root crown for new white roots. White roots and healthy roots are a good indication your crop is in good condition.

Wheat is a crop that can be influenced by nitrogen applications. Nitrogen is involved in two important processes in wheat plant development. Fertilizing wheat with nitrogen can significantly change the number of tillers formed, and increase the amount of protein produced. Evaluating the number of tillers will provide you an excellent indicator for nitrogen applications.

Research indicates that if the number of stems (tillers) is greater than 70 per square foot, you should plan on delaying your nitrogen application until just before the plants begin to joint. This delay will lead to the plants using more of the nitrogen applied and the high probability of a yield increase. If your stand has less than 70 tillers per square foot, then research has found that nitrogen applied at green up will increase the effective plant population. Nitrogen is a key component needed for a good yield, though too much nitrogen can have the opposite result on yield.

Shawn Conley, Extension Soybean & Small Grains Specialist UW-Madison, recommends that up to 70 lbs of nitrogen per acre. You can also reduce this amount by taking the nitrogen credit for any manure or legumes from the prior year. Spring nitrogen applications are difficult when a stand is thin, and an investment in nitrogen may not be a wise choice. The recommendation is to use 12-15 plants per square foot could serve as the cutoff (Use Table 1 as a guide to the number of wheat plants by row width).

Continued on next page.
When doing your counts use whole plants as opposed to tillers, the recommendations are based on plants per square foot. Before tearing up a whole field, you need to count the input costs already in the crop, the cost of starting a new crop, and current crop price. Wheat also has additional rotational benefits and the straw as a bonus.

The source of this article is a spring 2014 Waupaca County Newsletter, an article by Shawn Conley, Soybean & Small Grains Specialist UW-Madison. Material is edited for content and length.

ALFALFA SEEDING RATES

Each year new varieties and genetics provide producers with new options. With these added traits and genetics, the cost of seed also increases per bag. Several researchers have conducted studies to confirm which seeding rates produce the best stands and maximum return on investment for seed purchased. In an alfalfa budget, seed cost is not a major contributor to the long term cost of establishing and maintaining a quality stand. Producers can keep seed costs down by using research based recommendations for seeding rates.

Table 1. Wisconsin Winter Wheat - Spring Plant Stand Recommendations

<table>
<thead>
<tr>
<th>Plants/acre million</th>
<th>plants/sq ft</th>
<th>Row Width (inches) 6</th>
<th>7</th>
<th>7.5</th>
<th>Plants per foot of row</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>7</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>9</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>11</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>14</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>16</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>18</td>
<td>9</td>
<td>11</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>21</td>
<td>10</td>
<td>12</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>23</td>
<td>11</td>
<td>13</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>25</td>
<td>13</td>
<td>15</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>28</td>
<td>14</td>
<td>16</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>30</td>
<td>15</td>
<td>17</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>32</td>
<td>16</td>
<td>19</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>34</td>
<td>17</td>
<td>20</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>37</td>
<td>18</td>
<td>21</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>1.7</td>
<td>39</td>
<td>20</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td>41</td>
<td>21</td>
<td>24</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>1.9</td>
<td>44</td>
<td>22</td>
<td>25</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>46</td>
<td>23</td>
<td>27</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>48</td>
<td>24</td>
<td>28</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>51</td>
<td>25</td>
<td>29</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>53</td>
<td>26</td>
<td>31</td>
<td>33</td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page..
The average bag of alfalfa seed has on average 225,000 seeds per pound. The number of seeds per pound can vary depending if there are any added coatings that may have been added for additional benefit. If you take one pound of seed to cover on acre, the result would be somewhere around five seeds per square foot. By multiplying the pounds per acre spread times five, you will arrive at the number of seeds per square foot that have the potential to become viable plants in the field. For an example, a 15 pound seeding rate would result in about 75 seeds per square foot. After 2-3 weeks in the field, research indicates that only 50-75 percent of the seeds will result in a growing plant. Using a 60% loss as an average, this means 45 plants will be growing from the original 75 seeds.

By the next spring, these 45 seedlings will begin to compete for available resources. It is every plant for itself now, and another 40 to 50 percent of those plants will not survive the first season. Now the count is down to 25 plants per square foot. During the next 12 months, another 30 to 40 percent of the plants will disappear leaving 8-9 productive plant per square foot. Just over 10 percent of the original seeds planted have made it through and represent the future of the stand. In a normal stand about 3 productive plants will remain by the end of the stand’s life.

To develop recommendations, researchers tried the idea that increasing the original seeding rate per acre would result in a larger number of plants per acre. The studies conducted do show that higher seeding rates result in more seedlings through the end of the seeding year. Seeding rates below 8 lbs per acre do resulted in lower total yield in the seeding year. Missouri and Pennsylvania researchers found that as seeding rate increases, the percentage of plants that die in the seeding year also increases. Plant mortality rates increase from 45 percent to 70 percent when seeding rates exceed 20 lbs per acre. Seeding rates from 10 lbs and up all produced similar yield in the year following seeding.

Continued on next page...
Research strongly suggests that seeding rates over 10 lbs per acre of live seed is the most efficient level, and in Wisconsin the recommended rate is 12 lbs per acre. This equates to placing 60 seeds per square foot in the field. It is better to invest in the best genetics and traits for your farm’s purpose than to buying cheaper seed and sowing more lbs per acre.

On the farm, what the planned seeding rate is and the real application rate of seed to the field can be two very different numbers. The difference is determined by seeder calibration. Calibrating your seeder is highly recommended as seeding rates within a seeder rows can significantly impact amount of seed placed in the field. Also, seed depth can have a major influence on the number of plants that are growing after the first season. Generally, seeding rates above 12 lbs will not result in more hay in storage.

The source of this article is a Focus on Forage Vol 10: No 5. Article by Mike Rankin entitled “Determining the Optimum Alfalfa Seeding Rate”. http://fyi.uwex.edu/forage/files/2014/01/AlfSeedingRate-FOF.pdf Material is edited for content and length.

ACT 377 - IMPLEMENT OF HUSBANDRY (IOH) LAW

Act 377 became effective January 15, 2015 Statewide, including in Winnebago County. The law created a no fee permit that allows farmers to exceed weight and length limits for farm implements and commercial farm vehicles when traveling on Town roads and County and State highways. In addition, the law provides for a process for indentifying the route for you to use to reach the fields located away from the farmstead when operating over weight or length limits.

Continued on next page….
What did the new law do?
1. Creates new operating rules for farm equipment and vehicles that operate on town roads and county and state highways.
2. Some farm operators need to apply for a no fee permit to operate over a new weight limit and extended length of the implement or vehicle.
3. Designated some exemptions regarding the type of equipment you operate or the distance used to drive to fields away from the farmstead.

What farm equipment will need a permit if you exceed?
1. A 92,000 lb Gross Vehicle Weight or 23,000 lb per axle weight depending on the number of axles and spacing. (A chart is available in hard copy or the Wisconsin DOT or Winnebago County Highway website.)
2. A length limit of 60 ft for a LoH single vehicle, 100 ft for two LoH vehicles combined, 70 ft of three LoH vehicles combined that operate over 25 mph, or 100 ft for three LoH vehicles operating at 25 mph or less.

What is the permitting process?
To make the process less time consuming, you may submit your town and county permit applications to the Winnebago County Highway department. They will receive and forward your permit applications to the appropriate Town Board for a State permit you will need to visit the State Department of Transportation website or contact them for permit application.

After receiving your request for a permit application, each authority will then consider your request and either grant or deny your permit. Your County or Town permit will be granted based on the route you list in your application or the condition of the road or highway you intend to travel. If the Town or County denies your request, an alternative route will be investigated and approved for your permit.

Continued on next page...
Other things a farmer needs to know?

If you are operating over the weight limit or length restrictions on a Town road, County or State highway, you may be contacted by the Town, County or State if you do not have a permit as required by Winnebago County and Act 377. The Winnebago County Sheriff’s Department will assist with determining weight, coordinating weight checks, and enforcing other violations. Farmers should keep a copy of permits obtained with the equipment or vehicle while operating on Town roads and County or State Highways.

In addition to the no fee permit requirement, Act 377 also added some new lighting and marking requirements for safety purposes.

1. Self propelled including farm tractors in excess of 12 ft long need to be equipped with additional lighting.

2. Wide IoH in excess of 15 ft or that extend over the center line must have additional lighting or escort vehicle requirements.

3. IoH wider than 22 ft long and traveling over ½ mile have an escort vehicle/s requirement.

See the Wisconsin DOT website (www.dot.wisconsin.gov/business/ag/index.htm) for specific lighting and marking requirements.

Who do you contact for more information or a no fee permit application?

1. Winnebago County UW-Extension Agriculture Agent Darrell McCauley can assist you with questions regarding your farm and equipment. Darrell may be reached at (920)232-1970 or email at Darrell.mccauley@ces.uwex.edu

2. The Winnebago County Highway Department will receive questions and assist you regarding Town and/or County permit applications. The Winnebago County Highway department can be reached at (920)232-1700. The Wisconsin DOT may be reached at (608)266-7320 or at Agvehicles@dot.wi.gov.
MICROORGANISMS ALLOW SOIL TO STORE AND RELEASE MORE NUTRIENTS, REDUCING FERTILIZER EXPENSES

By Nav Ghimire

Soil health is the capacity of a soil to function, within natural or managed ecosystem boundaries, to sustain plant and animal productivity, maintain or enhance water and air quality, and support human health and habitation. Soil organic matter and soil biology play a major role in soil health.

Healthy soil holds and releases more nutrients to be used by crops. You want to make your soil as healthy as possible—and keep it that way—to increase yield with less fertilizer expense. As you add soil health to your management goals, it might help to think of soil as a production system busy factory. The workers are living creatures—larger ones such as night crawlers and earthworms and, of particular importance, microbes. The healthier your soil, the higher the population of microbes and the bigger the production system becomes. Farmer’s job is to manage an industrious herd of critters that dwell in the soil.

Although microbial activity affects all nutrients, it is especially important with nitrogen (N), phosphorus (P) and sulfur (S). That's because a high percentage of those nutrients is tied up in the organic form. Organic nitrogen, phosphorus and sulfur are unavailable to plants. Microbes make nutrients available to plants by converting them to the inorganic form through mineralization.

In the organic form, nutrients are part of a carbon chain, and carbon is food for soil microbes. Carbon is found in crop residue and in the bodies of live and dead microbes. The process we view as decomposition occurs as microbes use this carbon. As they cycle carbon, microbes also cycle nutrients. The healthier your soil, the more critters are working for you.

Understanding soil microbes reveals why proper pH and good aggregate stability, or soil structure, are essential to healthy soil. To a crop producer, the most important microbes are detritivores, organisms that eat dead tissue and make up 85% of the population. Their food source is carbon.

Continued on next page...
The most important detritivores are fungi, bacteria and actinomycetes. Fungi are involved in all stages of decay or decomposition. They aid in nutrient uptake around roots. They can handle somewhat acidic conditions. They can't handle hot and dry conditions, so water management is essential to maintain their population.

Bacteria are single-cell organisms. Some scientists believe a gram of soil contains 20,000 species of bacteria. They are very important to nutrient cycling, especially with nitrogen. They do the easy early work of decomposition, breaking down the finer tissues of plants. This is the group responsible for most of the carbon penalty, which creates problems with nitrogen, phosphorus and sulfur availability in the spring when plants are small. The population is resilient during dry conditions, but sensitive to soil pH. Their ideal pH range is 6.3 to 7.0.

Actinomycetes do the hard work of decomposition, breaking down residual compounds and cellulose—the stalks, crowns and root balls of corn. They favor warmer soil, so they show up later in the season. Actinomycetes are sensitive to pH, preferring 6.0 to 7.5. That's why we see cornstalks and root balls remain under composed for multiple years in fields with acid soil.

Most fungi, bacteria and actinomycetes are aerobic heterotropes. That means they obtain carbon by breaking down organic material and need oxygen to live. Some are aerobic autotropes that get carbon from carbon dioxide or carbonates in the soil.

Efficient cycling of N, P and S requires a healthy population of microbes. We often think we apply nutrients to supply the growing crop but, in reality, we are feeding the soil microbes. The healthier our 'herd' of microbes, the more nutrients they supply to the crop.

Farmers know that nitrogen from the previous year's crop can be recycled for the next year's crop. Some use legume cover crops to acquire nitrogen from the atmosphere, to be stored and used during the next growing season. Others use cover crops, such as radishes and rye, to take up nitrogen left over from the past growing season, so it can be cycled forward for the next crop. The entire cycling process depends on soil microbes decomposing the cover crop residue (as well as the old cash crop residue), then releasing the nitrogen from the soil.

Continued on next page...
In everything from humans to corn plants, P is essential for energy. The phosphorus cycle is controlled by microbes, as they consume phosphorus then mineralize or release it for other organisms. Anything that affects soil microbes affects phosphorus mineralization and availability—temperature, moisture, oxygen, soil pH, nutrient balance and the carbon supply.

It's easy to see the impact of soil microbes on P availability when corn emerges in cold soil. The plants turn purple, a symptom of P deficiency as the cold soil temperature shuts down microbial activity. They green up again as the soil warms and microbes resume their activity.

Because phosphorus is an energy source for microbes, the carbon/phosphorus ratio of crop residue affects the amount of phosphorus released in the soil. A carbon/phosphorus ratio of less than 200 (200 parts carbon to 1 part phosphorus) produces a net gain of phosphorus. A ratio of 200 to 300 is breakeven. A ratio above 300—in other words, crop residue that contains less than 0.3% phosphorus—results in a net loss of phosphorus or immobilization in the soil. Cornstalks, cobs, husks and sheath contain less than 0.3% phosphorus, so they cause immobilization.

Depending on the soil, 80% to 98% of P (which can range from 3,000 lb. to 6,000 lb. per acre-slice) is tied up in crop residue, live plants, dead tissue, live tissue and humus. It requires soil microbes to release it. Phosphorus availability is driven by microbial activity. The healthier the microbe population, the more mineralization occurs.

Similar to N and P, S is contained in crop residue, organic matter and dead organisms in the soil. It must be mineralized into the available form, sulfate, before plants can use it. The microbes that do the work are autotrophic bacteria.

Because the microorganisms that mineralizes are aerobic, or air-breathing, they require oxygen. Once S is mineralized into sulfate, if soil conditions become anaerobic—as when it's saturated with water, the sulfate (like N) can be lost through volatilization. Managing the soil's oxygen supply, which includes water, is the key to obtaining more usable sulfur. One of the hallmarks of healthy soil is macropores that contain 60% water and 40% air.

Continued on next page...
Soil microorganisms are part of the biological component of soil health. The other two components are chemical and physical, and each one impacts the others. On the chemical side, it's most important to maintain optimum soil pH. Nutrient levels will be higher with proper pH than they will be in acidic or alkaline soil. Unfortunately, lime applications are the first thing farmers tend to cut back on when times are tight. In addition, we need enough nitrogen, phosphorus and sulfur in the soil to support healthy populations of microbes. If the soil can't supply enough, we have to apply more, until we reach the proper balance.

On the physical side, our goal is to have as many macropores as possible; macropores are where root systems operate and microbes live. They also make it possible for water to move upward and downward through the soil. Water infiltration rate and aggregate stability (which creates macropores) are keys to the microbial environment.

The steps farmers can take to improve microbial habitat include:

Leave residue on the soil surface to protect it from the sealing effect of a hard rain.

- Eliminate dense and compacted layers, so water, roots and microbes can move up and down.
- Install drainage to reduce excess water and regulate seasonal water tables.
- Plant cover crops and move to reduced tillage, strip-till or no-till to improve aggregate stability.
- Diversify your rotation with grasses and legumes as much as possible and plant cover crops to encourage microbial diversity.
- Apply manure, especially if you harvest com as silage.

Continued on next page...
Don't remove too much residue from baling or harvesting silage.

Don't incorporate residue too deep into anaerobic zones where aerobic microbes can't decompose it.

Think about the consequences of everything you do in terms of its effect on soil microbial populations. The bigger the microbial system, the more nutrients the soil can hold and release for your crops.

Nav Ghimire is the University of Wisconsin-Extension Agriculture Agent for Green Lake County. He can be contacted in nav.ghimire@ces.uwex.edu or by phone 920-294-4037. The original writer of this article is Darrell Smith, which was published in Farm Journal Magazine on October 25, 2014. Material is edited for content and length.

NEWS FROM USDA

Conservation Practices for Honey Bee Health

USDA plans to provide more than $4 million in technical and financial assistance to help farmers and ranchers in the Midwest improve the health of honey bees, which play an important role in crop production. USDA’s Natural Resources Conservation Service (NRCS) is focusing the effort on five Midwestern states – Michigan, Minnesota, North Dakota, South Dakota and Wisconsin.

The future of America’s food supply depends on honey bees as an estimated $15 billion worth of crops is pollinated by honey bees, including more than 130 fruits and vegetables. Funding will be provided to producers through the Environmental Quality Incentives Program (EQIP) to plan and promote habitat that will provide nutritious pollen and nectar while providing benefits to the environment. Applications are accepted on a continuous basis at local USDA service centers.

Continued on next page...
From June to September, the Midwest is where more than 65 percent of the commercially managed honey bees in the country overwinter. It is a critical time when bees require abundant and diverse forage across broad landscapes to build up hive strength for the winter.

The financial assistance through EQIP will provide guidance and support to farmers to implement Conservation practices that will provide safe and diverse food sources for honey bees. For example, appropriate cover crops or pasture management may provide quality forage and habitat for honey bees and other pollinators, as well as reduce erosion, increase the health of their soil, and inhibit invasive species. NRCS may provide financial assistance to landowners for other practices that improve Honey Bee forage including: Conservation cover, Field Borders, Forage and Biomass plantings, Prescribed Grazing and Shrub Establishment.

To apply or request more information please contact Merrie Schamberger, NRCS Oshkosh, at (920)424-0329 or email merie.schamberger@wi.usda.gov.
NEWS FROM FSA

Agriculture risk coverage (ARC) & Price loss coverage (PLC)

Please contact your administrative county to set up an appointment

BASE REALLOCATION

SEPTEMBER 29, 2014—MARCH 31, 2015
ONE OWNER MUST SIGN

Owners have one-time opportunity to:
- Relocate the farm’s base acres or
- Retain the existing 2013 base acres.

Reallocation is a proration of the covered commodities planted in the crop years 2009-2012 to the total acres of all covered commodities planted or considered planted during that time.

Note: Base acres are an old history of what was planted on the farm and will not increase or decrease.

YIELD UPDATE

Owners also have a one-time opportunity to update yields.
- Uses 90% of the farm’s 2008-2012 average yield per planted acre.
- Years without a planted covered commodity are excluded.
- If the actual yield is less than 75% of the county average yield, then the substitute yield will be used.
- Or retain current CC yields.

Acceptable Records—“Verifiable or reliable” may include, but are not limited to: RMA records, commercial receipts, settlement sheets, load summaries, silage appraisals or measurements converted to bushels, fed production can be determined reliable by the COC using items like storage capacity, cattle numbers, etc.

Note: Yields will only be used to determine payments for the PLC program by all owners are encouraged to update yields regardless or the program

Continued on next page...
ELECTION

NOVEMBER 17, 2014—MARCH 31, 2015
ONE PRODUCER MUST SIGN

Producers make a one-time election of PLA, ARC County (ARC-CO), or ARC Individual Coverage (ARC-IC) for crop years 2014-2018.

No election is made in 2014 will result in the default program designation of “PLC” for 2015-2018, and eliminate any 2014 payment.

Effective price = the higher of either National Market Year Average Loan Rate

Reference price = nationally established prices for the 2014 Farm Bill

PLC—Payments are issued when effective price of a covered commodity is less than the reference price for that commodity.

- Payments are not dependent on the planting of a covered commodity.
- Paid on 85% of base acres

ARC-CO—Payments are issued when the actual county crop revenue is less than the ARC-CP guarantee and are based on the county data, not individual farm data.

- Payments are not dependent on the planting of a covered commodity.
- Payments are equal to 85% of base acres times the difference between ARC-CO guarantee and the actual county crop revenue.
- ARC-CO guarantee is determined by multiplying 86% by the ARC-CO benchmark revenue.
- Payments may not exceed 10% of ARC-CO benchmark county revenue.

Continued on next page...
ARC-IC—The farm, for ARC-IC purposes, is the sum of the producer’s interest in all of the producer’s ARC-IC farms in the State. Payments are issued when the actual farm crop revenue is less than the ARC-IC farm guarantee.

- Payments are dependant on the planting of a covered commodity; however, the payment is limited to 65% of the total base acres times the difference between the ARC-IC guarantee and the ARC-IC crop revenue across all covered commodities planted on the farm.
- The farm’s ARC-IC guarantee equal 86% of the farm’s ARC-IC benchmark revenue.

ENROLLMENT

MID-APRIL 2015-SUMMER 2015

PRODUCERS WITH SHARES MUST SIGN

Producers sign contracts to participate in ARC/PLC for 2014 and 2015 crop years.

Annual requirements will include:

- Contract signature
- Valid lease
- AGI certification
- Annual crop reports—July 15 deadline and November 15 for fall-seeded small grains and forage
- Update farm records

Note: If ARC-IC is elected, annual production/yields must be provided.